# Apéry’s constant

The number

$\zeta (3)$ | $={\displaystyle \sum _{n=1}^{\mathrm{\infty}}}{\displaystyle \frac{1}{{n}^{3}}}$ | ||

$=1.202056903159594285399738161511449990764986292\mathrm{\dots}$ |

has been called Apéry’s constant since 1979, when Roger Apéry published a remarkable proof that it is irrational [1].

## References

- 1 Roger Apéry. Irrationalité de $\zeta (2)$ et $\zeta (3)$. Astérisque, 61:11–13, 1979.
- 2 Alfred van der Poorten. A proof that Euler missed. Apéry’s proof of the irrationality of $\zeta (3)$. An informal report. Math. Intell., 1:195–203, 1979.

Title | Apéry’s constant |
---|---|

Canonical name | AperysConstant |

Date of creation | 2013-03-22 13:27:19 |

Last modified on | 2013-03-22 13:27:19 |

Owner | bbukh (348) |

Last modified by | bbukh (348) |

Numerical id | 8 |

Author | bbukh (348) |

Entry type | Definition |

Classification | msc 11M06 |

Classification | msc 11J81 |