You are here
Homegeometric constructions by Euclid
Primary tabs
geometric constructions by Euclid
The geometric constructions using compass and straightedge consist of three simple fundamental tasks as given in Euclid’s The Elements (in ancient Greek $\Sigma\tau{o}\iota\chi\varepsilon\acute{\iota}\alpha$, transliterated Stoikheia). These fundamental tasks are as follows:
1. 2. Drawing a circle having a given point as its center and passing through another given point.
3.
Example. The usual task of drawing a circle with a given point as its center and with a given line segment as its radius (a fundamental task in many textbooks) can be reduced to Euclid’s fundamental tasks (one needs five circles!).
Remark. It can be proven that all geometric constructions with compass and straightedge are possible using only the compass. (See e.g. compass and straightedge construction of parallel line.)
In the text of Euclid, the constructions are not listed separately, but are combined with the theorems as
propositions. A way to tell whether a proposition is a theorem or a construction is to go to the end of
the proof and see if it ends with QED, in which case it is a theorem, or with QEF, in which case it
is a construction. Note that QEF is an abbreviation for the Latin phrase quod erat faciendum, meaning ‘which was to be done’.
Here is a list of the geometric constructions to be found in The Elements:

I 1 Given a line segment, construct an equilateral triangle having that segment as a side.

I 3 Given two line segments, produce a line segment whose length is the difference of the lengths of the two given line segments.

I 9 Bisect a given angle.

I 10 Bisect a given line segment.

I 11 Given a line and a point on this line, construct a line orthogonal to the given line passing through the given point.

I 12 Given a line and a point not on this line, construct a line orthogonal to the given line passing through the given point. (i.e. Find the projection of a point on a line.)
If you are interested in seeing the rules for compass and straightedge constructions, click on the link provided.
References
Online edition of Euclid’s The Elements in Greek prepared by D. E. Mourmouras.
Mathematics Subject Classification
51M15 no label found5100 no label found Forums
 Planetary Bugs
 HS/Secondary
 University/Tertiary
 Graduate/Advanced
 Industry/Practice
 Research Topics
 LaTeX help
 Math Comptetitions
 Math History
 Math Humor
 PlanetMath Comments
 PlanetMath System Updates and News
 PlanetMath help
 PlanetMath.ORG
 Strategic Communications Development
 The Math Pub
 Testing messages (ignore)
 Other useful stuff
 Corrections