# König-Egervary theorem

The König-Egervary theorem states that in a finite matrix of 0’s and 1’s, the maximum numbers of 1’s such that no two are in a line, equals the minimum number of lines which collectively contain all the 1’s. Here line means row or column.

Take this matrix, for example,

$$\left[\begin{array}{cccccc}\hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill \\ \hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill \\ \hfill 0\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill \\ \hfill 0\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill \\ \hfill 1\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill \end{array}\right]$$ |

Here the max and min numbers (always equal) are 4.

## References

- 1 A. Chandra Babu, P. V. Ramakrishnan, “New Proofs of Konig-Egervary Theorem And Maximal Flow-Minimal Cut Capacity Theorem Using O. R. Techniques” Indian J. Pure Appl. Math. 22(11) (1991): 905 - 911

Title | König-Egervary theorem |
---|---|

Canonical name | KonigEgervaryTheorem |

Date of creation | 2013-03-22 16:33:47 |

Last modified on | 2013-03-22 16:33:47 |

Owner | PrimeFan (13766) |

Last modified by | PrimeFan (13766) |

Numerical id | 4 |

Author | PrimeFan (13766) |

Entry type | Definition |

Classification | msc 05A19 |

Synonym | Konig-Egervary theorem |