## You are here

Homesubgoups of locally cyclic groups are locally cyclic

## Primary tabs

# subgoups of locally cyclic groups are locally cyclic

###### Theorem 1.

A group $G$ is locally cyclic iff every subgroup $H\leq G$ is locally cyclic.

###### Proof.

Let $G$ be a locally cyclic group and $H$ a subgroup of $G$. Let $S$ be a finite subset of $H$. Then the group $\langle S\rangle$ generated by $S$ is a cyclic subgroup of $G$, by assumption. Since every element $a$ of $\langle S\rangle$ is a product of elements or inverses of elements of $S$, and $S$ is a subset of group $H$, $a\in H$. Hence $\langle S\rangle$ is a cyclic subgroup of $H$, so $H$ is locally cyclic.

Conversely, suppose for every subgroup of $G$ is locally cyclic. Let $H$ be a subgroup generated by a finite subset of $G$. Since $H$ is locally cyclic, and $H$ itself is finitely generated, $H$ is cyclic, and therefore $G$ is locally cyclic. ∎

## Mathematics Subject Classification

20E25*no label found*20K99

*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff
- Corrections